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ABSTRACT

A general discussion of the properties of magnetohydrodynamic

flows at low conductivity is given, and then attention is restricted to the

class of such flows satisfying the following conditions:

1.

5.

The flow is steady, two-dimensional, inviscid, and only slightly
perturbed from uniform conditions.

The magnetic field vector is also two-dimensional and lies in
the plane of the flow.

The distortion of the applied field by the induced currents is
negligible.

Physical boundaries on the flow are one or two infinite plates
parallel to the flow direction,

The conductivity of the fluid is a scalar quantity, but may vary

in a restricted manner with position.

With these assumptions, the perturbations to the flow are calculated

exactly for arbitrary magnetic fields for the cases in which the undisturbed

flow is either incompressible or supersonic. Illustrative examples for

simple magnetic fields are evaluated; for some of these examples the sub-

sonic case is also treated. Another particular example is used to show the

effect of spatially varying conductivity on the flow. The limits of the

applicability of these results are discussed, and general conclusions

regarding the nature of the flow perturbation are drawn,
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EXACT SOLUTIONS TO A CLASS OF LINEARIZED
MAGNETOHYDRODYNAMIC FLOW PROBLEMS

R. H. Levy

Avco-Everett Research Laboratory, Everett, Massachusetts

I. INTRODUCTION

The study of magnetohydrodynamic flow problems in which the
conductivity is small is of interest in such areas as flight magnetohydro-

’

dynamics, 1,2 magnetohydrodynamic power generation, magnetohydro-
dynamic pumps and flow met;ers5 and some shock tube work, 6 Although
much work has been done on these subjects, there exist surprisingly few
theoretical solutions applicable to this type of problem; this is in marked
contrast to the situation in which the conductivity is taken to be infinite.
Good discussions of the features that distinguish the low conductivity
problems are to be found in the works of Kemp and Petschek7 and Hains,
et al, 8 The most important of these features is the small value of the

magnetic Reynolds number. The effect of this is that the applied magnetic

1Resler, Jr., E. L. and Sears, W. R., J. Aeronaut. Sci. é, 235-245
(1958).

2ZRosa, R. J., Ph.D. Thesis, Cornell University, Ithaca, New York (1956).
3Rosa, R. J., Phys. Fluids 4, 182 (1961).

4Sutton, George W., ARS Preprint 2005-61 (1961).

5Shercliff, J. A., United Kingdom Atomic Energy Research Establishment,
Report No. X/R 1052 (1953)

6Patrick, R. H. and Brogan, T. R., J. Fluid Mech. 5, 289 (1959).

"Kemp, N. H. and Petschek, H. E., J. Fluid Mech. 4, 553 (1958).

8Hains, F. D., Yoler, Y. A., and Ehlers, E., Proceedings of the Third

Biennial Gas Dynamics Symposium (1959) (Northwestern University Press,

Evanston, Illinois, Dynamics of Conductivity Gases).




field is only slightly distorted by the flow in the region of interest. In
addition to the magnetic Reynolds number, a further parameter (called

the interaction parameter, see Eq. (9)) is needed to describe the perturba-
tion of the flow from some initial (usually uniform) state.

The procedure of Kemp and Petschek is to write the various flow
and electromagnetic quantities as the sum of zeroth order quantities and
two perturbation terms proportional respectively to the magnetic Reynolds
number and the interaction parameter and then to solve the resultant linear
equations for the perturbation quantities. This general analysis will be
assumed in the present paper, and attention will be confined to the determi-
nation of those perturbations of the flow quantities which are proportional
to the interaction parameter. Similar treatments of the problem are also
given by Ehler59 (for the axisymmetric case) and by Morioka10 (for the
two-dimensional case).

The geometrical configurations to be studied were suggested by two

papers of Sherman“’ 12

in which a steady two-dimensional uniform slightly
conducting incompressible flow passes through a channel; a magnetic field,
also two dimensional, is applied to the flow and has the general effect of
obstructing it. In the particular case studied by Sherman the magnetic
field was due to a current flowing in a straight wire lying outside the channel
and perpendicular to the flow. In this paper, an exact solution to this
problem is given which agrees closely with the numerical results given by
Sherman for the inviscid case. In addition, a wide selection of more
involved problems are solved analytically. These include cases in which
the applied magnetic field is of arbitrary form (for the incompressible

and supersonic cases), as well as subsonic cases for simple magnetic

field configurations and cases in which the conductivity (which has hither-

to been tacitly considered to be constant) is allowed to vary spatially in a

9Ehlers, F. E., ARS J. 31, 334-342 (1961).

10Morioka, S., J. Phys. Soc. Japan 16, 2544-2550 (1961).

ll1Sherman, A., Advances in the Astronautical Sciences, (The MacMillan
Company, New York, 1961) Vol. 6.

12Sherman, A., Phys. Fluids 4, 552-557 (1961).
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restricted manner. On the other hand, no boundary layer calculations
based on the computed inviscid pressure gradients are included.

The basic mechanism by which the applied magnetic field retards
the flow is as follows: an electromotive force is induced in the flow in the
direction perpendicular to the plane containing the velocity and the magnetic
field vectors. This electromotive force drives a current through the fluid
which is assumed to be returned at infinity. This may be imagined more
realistically by considering the two-dimensional channel as the limit of a
large annular duct. No externally applied electromotive force is con-
sidered to be present, although such an arrangement might be interesting
experimentally. In the present small perturbation analysis, the electric
current is calculated directly from Ohm's law using the unperturbed values
of the velocity and magnetic field. It is a small quantity, being proportional
to the conductivity., The effect of the current flowing through the fluid in
the presence of a magnetic field is to produce a body force on the fluid,
whose general action is to retard the flow. This body force, which is also
proportional to the conductivity, may then be calculated as a function of
position; and, mathematically, the first order flow problem becomes one
in which a given (non-conservative) body force is applied to the fluid. This
is the specific problem which is solved in this paper for a wide variety of
conditions. It should be noted that in order to calculate the electromagnetic
force on the fluid as a whole to the first order in the interaction parameter
(or, what is the same thing, its reaction at the coil giving rise to the
magnetic field) it is not necessary to calculate the perturbed flow field.
However, in the presence of a physical boundary, there is an additional
force of the first order in the interaction parameter in the form of an
induced pressure which cannot be found without first calculating the flow
perturbation,

The nature of the relation between the electric current and the
electric field (Ohm's law) in an ionized gas has been extensively discussed

by Schluter. 13 Kemp and Petschek (loc. cit.) made use of a simplified

13Schluter, A., Z. Naturforschg 5a, 72 (1950) and 6a, 73 (1951).
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form of Schluter's result applicable to a slightly ionized gas, but in which
nevertheless both Hall and ion slip effects were present. The possibility
of using this form of Ohm's law with tensor conductivity without greatly
complicating the mathematics arose because of a number of special
features of the geometry chosen. In the present case, the use of such an
Ohm's law would add considerably to the mathemmatics and has, therefore,
been eschewed in the interests of brevity and clarity. In its stead, the
simple form of Ohm's law with scalar conductivity is used. The limit of
applicability of this law is roughly that each electron should suffer at least
one scattering collision per cyclotron period; it is not hard to predict the
general nature of the modification to the present work that would be caused
by an important Hall effect.

While the assumptions used in this paper are, in the above respect,
more restrictive than those of Kemp and Petschek, in another respect they
are less so; for a number of cases of linearized compressible flow, both
subsonic and supersonic have been solved and are presented here. The
basis for the solution of compressible magnetohydrodynamic flow problems
by these techniques may be found in Fishman, et al.14 It will be sufficient
to remark here that, apart from the usual limitations of linearized com-
pressible flow theories, an additional complication arises in view of the
Joule heating of the flow by the induced currents within it. This is par-
ticularly important at high Mach numbers where the relative change in
temperature may be high, leading to large changes in the conductivity.

As an example of this effect, Lin15 predicts that at atmospheric pressure
and temperatures around 5000°K the conductivity of air increases as about
the 10th power of the temperature. At higher temperatures this effect is

considerably less marked.

14Fishman, F., Lothrop, J., Patrick, R. and Petschek, H., Avco-Everett
Research Laboratory Report No. 39 (1959).
151amb, L. and Lin, S. C., J. Appl. Phys. 28, 754 (1957).



1I. MATHEMATICAL FORMULATION

On the basis of the remarks of the preceding section, the mathe-
matical formulation of the problem is easily accomplished. Using asterisks
to denote dimensional quantities, and taking Cartesian coordinates x* y* in
the plane containing both the flow and the magnetic field vectors, Ohm's

law shows that the electric current is in the z-direction and is given by:
X
O x, wm X X o%
(1)

The equations of motion are:
(2)

(3)
The equation of continuity is:
2, (F*w )+ (P*v )=0
(4)

The energy equation may be taken to be:

% ds*  m Js®
w Sk TV IE J / o T
(5)

Finally, a perfect gas with constant y is assumed, so that
¢ % RT™
(6)
(F-04s*= R Udp/p™ -¥da*/p%]
(7)



The following non-dimensional quantities are defined:

-, . . W
X, V¥ ¥ ) ey p =J, /0uUB,  ;bx.by =B, BB ;
=0V, ; u',v‘:u*,\/"yu ;/0‘=(°“7(‘;',

s'=s%/R ; = p¥/RU*
(8)

Then, in terms of the interaction parameter defined by

S =0, Boz‘/o//ocu
(9)

Equations (1) to (7) become (after elimination of the temperature)
- . ‘
(10)

e (u a‘* +v'-a—)+ %’%‘+5sz,=0
(11)
P o R B S
(12)
S (P & (e =0
(13)
) ! ) '_ . 2 ]
w24y %%‘S"z /P
(14)

(¥-1)ds' = [dp/p"' - ¥dp!/ ]

(15)
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Next, the assumption of small perturbations must be invoked. The

unperturbed flow is taken to be uniform in the x-direction and perturbation
quantities are defined as follows:

W=+ Su v'=Sv P'= 1+ Sp

s'=Ss p'= /¥ M*+ Sp

(16)
where M2 =p 0U?‘/y P, is the free stream Mach number. The linearized

(first order in S) flow problem to be dealt with is then defined by the
following equations:

w dp _ _ 2
%T+ X o by

(17)

(18)

(19)
s - y mMio 2
Sy = ¥ Meby
(20)

(¥-1)ds = ¥ M2 de —Tdﬁ

(21)
The specification of the problem is completed by noting that the magnetic

field vector must be irrotational (this is a result of assuming the magnetic

Reynolds number to be negligible) and, of course, solenoidal. Thus:

%%l-%%t:o: %1‘ %‘L:o

-T=-

(22)



Before proceeding to the solution of any particular problem, certain
general simplifications may be made in the above system of equations.

First, the entropy is given directly from Eq. (20) as:

x
S=Y sz o byl dx
-0
(23)
Secondly, Eq. (21) may be integrated immediately to give the density in

terms of the entropy (now a known quantity) and the pressure:

e>Me - —7—““) s

(24)
Next, the x-component of velocity is given in terms of the (unknown)

pressure and the (known) applied magnetic field by:

x
w= -p -/ O‘byzdx
-o

(25)
Lastly, u, p, and s may be eliminated from Eqs. (17), (19) and
(24) to give:
v 2._ = ~ 2
3L ¢ (M2-1) 28 =[i+(v- 1M o b,
(26)

which, together with Eq. (18), forms a system of two inhomogeneous
partial differential equations for v and p If these can be solved the remain-
ing quantities may all be found directly from relations (23), (24) and (25).
Although these equations are linear in the unknowns, they are non-linear

in the applied magnetic field so that solutions for different field configura-

tions may not be superposed.

III. INCOMPRESSIBLE PROBLEMS

For the present, the conductivity will be assumed constant through-
out the flow so that o0 may be taken to be unity., Then, for the incompressible

case, Eqs. (18) and (26) reduce to
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(27)

oV _
oY

(28)

This system of linear inhomogeneous partial differential equations
is best dealt with by splitting the solution into a particular solution (dis-
tinguished by the subscript p) which will depend only on the form of the
magnetic field, and a complementary solution (distinguished by the subscript
c) which will satisfy the homogeneous part of Eqs. (27) and (28) together
with suitable boundary conditions. It is a remarkable fact that when the
magnetic field satisfies Eq. (22) and vanishes reasonably at infinity a
simple particular integral can always be found; it is

1 x
Vp=‘2'_ byf bxdx

-eQ

(29)

ok o [ tn vt [ Tdout o

(30)

Furthermore, the complementary solution may be obtained as

pc+'\vc =w (X+1Y) = w(Z)

where w (z) is an analytic function determined by the relevant boundary
conditions. In this paper, as indicated in the introduction, the flow will
always be bounded by one or two infinite planes parallel to the flow. Thus,
the boundary conditions will have the form Iw + Vp = 0 for one or two values
of y and all values of x.

A number of illustrative examples of these solutions have been
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worked out and are presented by Levy, 16 In the interests of brevity only
two of these will be reproduced here. In both cases the flow is bounded
only by the plane y = 0; the magnetic field in the first case is that due to a
current flowing in a single wire at the point (0, -1). Thus, the physical
distance of the wire from the boundary is Yo taking B0 to be the field

strength at the origin, pol/Zﬂyo, the field components become:

- Yl = —X_
bx = x2+(y+0* by = Er(vent (31)

Then
\ _ X
v ='ix[1;ﬁ+u“ V-H‘]
P xT+ (v+ )2 (32)
| -\
po= 2 [x- (v (% +tan ] )]
P X%y (v+ )% ' (33)
The boundary condition on w (z) is
\ -1
R ttan " x
Dw= 2L [12’1 ] ony=0
X%+
(34)
and since w (z) is analytic in the upper half-plane,
. L A-iz
W(Z) = \ ,Vd- - F3 Zl“ 2
z+i z2+1
(35)

From the above the whole perturbed flow may be found at once. It will be

sufficient here to quote the result for the pressure on the wall which is

16Levy, R. H., Avco-Everett Research Laboratory, AMP 70 (1962).

-10-



o= +(x-tan"'x) - } x1n -3-3_"—&

X<+ |

(36)

Levy (loc. cit. ) has also calculated this flow when an additional
boundary is placed at y = H. The pressure on the lower wall for various
values of H are shown in Fig. 1; the results for H = 6. 4 agree fairly well
with those of Sherman except for a small constant displacement which is
probably due to the fact that in his numerical calculations the pressure was
assumed to vanish at some finite negative value of x. The total pressure
drop along the channel is 7 In (H + 1)/2H.

The slow vanishing of the field at large distances in the above case
results in the divergence of the drag integral. This difficulty is avoided
in the next example, where a linear dipole with axis parallel to the flow is
placed at the point (0, -1). If B, is again taken to be the field at the origin,

the components are:

B =T +4) b, = X2 (v 41 )%
X% +(y+1 Yo IxPevent]® (37)
Then
Vo = 1oty ]
P [x2+ (v+2)3 (38)
Po= LxLve*+ %3]
P xz +(y+ )] (39)
and, ony =0
L2
_ =z (x*-1)
s Enw (40)
Thus
w(;):-é(z.’-+3iz—+)(2+i)_3 (41)
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Hence, the pressure on the wall is

; -3
p=-gx*+§x2+5)[x2+1] (42)

and this is shown, together with the corresponding results for the case of
a channel of height H in Fig. 2. The drag pasr unit length on the dipole for
the single wall case is (7/8) puzyos,

A very interesting observation may be made in respect to the
pressure force exerted on the fixed wall (for the single wall case), the
observation being applicable to any magnetic field configuration and not
only the two examples given above. The net force, where the field is
symmetric about the line x = 0 is, of course, zero, but the moment about
the origin exerted by the pressure distribution diverges linearly., Mathe-
matically speaking, this is because the pressure returns to zero only as
x-1 for large x; it is an unexpected result that this behaviour is independent
of the form, or the rate of decay of the magnetic field. It may be shown
that the result is a consequence of the finite displacement of the streamlines
in passing from x = -® to x = +%, and always follows where this displace-
ment effect can be exhibited; the displacement of the streamlines results
from the finite velocity defect at x = + %, which in turn may be deduced
from Eq. (25) with the observation that p must return to zero at x = + %,

Of course, in a practical case the moment actually obtained will be limited
both by three-dimensional effects and by the finite size of the body; however,
it might well turn out that the actual moment might well be more important
than the drag for certain flight applications. A last remark in this connec-
tion is that the phenomenon does not appear in supersonic flow for the
reason that, as will appear, the pressure on the wall at a certain point
depends only on the values taken by the magnetic field along the characteris-
tics leading to the point in question. Thus, if the field is confined to a

finite region, or decays very rapidly, the pressure will behave similarly.

The method of solving Eqs. (27) and (28) used depends on the
existence of the simple form of the particular solution Eqs. (29) and (30).

If this particular solution had not been found, Eqs. (27) and (28) would still

be amenable to solutions using the more powerful transform techniques.

-13 -
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Fig. 2 This is the pressure on the lower wall of a channel of a height H
when the flow is impeded by the magnetic field due to a linear
dipole at unit distance below the wall.
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However, a great advantage of the present procedure is the simplicity of
the results which makes for greater understanding of the problem. It will
shortly be seen that the particular solution does not apply to the subsonic
cases so that the subsonic results obtained are much more complicated.
For the incompressible case, other field configurations are easily studied;
and, apart from the results of Levy already referred to, the solution to the
interesting case of two wires with finite separation carrying equal and
opposite currents is presented in the same paper (loc. cit.).

It appears that simple solutions of the type discussed are also
available for axisymmetric flows. From the paper of Ehlers (loc. cit.)
the equations corresponding to Eqs. (27) and (28) may be deduced. They

are
%:_* gr = by by (43)

P 2,
¥ 5% (o9~ > " br (44)

and the magnetic field components now satisfy

obe _  2by _ by, L 2 -
X - I U S T Foc)=0 (45)
instead of Eq. (22). The analogous particular solution is then
X X
VP=':‘i,brf bx4‘+[ b, b, dx
) ) (46)
L
PP= ‘i bx/ bxd‘
- (47)
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The application of this result to the particular problem discussed by
Ehlers in which the flow of a fluid down an infinite pipe is impeded by the
magnetic field due to a concentric circular coil is not possible in closed form
owing to the complicated form of the field components. However, the
numerical solution to this problem would presumably be easier by this
method; as above, it involves only the use of Vp calculated on the boundary
as the boundary condition in a potential flow problem. It can be shown that
for flows along the exterior of an infinite pipe the pressure returns to zero

like x-z; in view of the geometry no net moment is exerted by this force.
IV. SUBSONIC PROBLEMS

The equations governing the subsonic case with uniform conductivity
are

v e -
ox T oy by (48)

LY - (-MH BB - (v - M b} (49)

If the coordinates and variables are transformed by the Prandtl-
Glauert rule the field components will no longer satisfy the relation (22),
In these circumstances, no particular solution of these equations has been
found for arbitrary magnetic fields. However, solutions may be obtained
when the field components are given by Eqs. (31) or (37) for in both these
cases transformation to polar coordinates with origin at (0, -1) makes
possible the determination of particular solutions by separation of variables.
The complementary solutions can again be found by complex variable

techniques using the function

welz=x+i8y)=BprPective (50)

-16-
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2
where B = N1 - M” for subsonic flow.

The results for both cases are given in Levy (loc. cit. ). It will be
sufficient here to quote the result for the pressure on the single wall in the
single wire case which is:

- 1) M2 -
P (x,0)= i[\:z_(: 2:‘ ] [ —}- -g— 1n ——(“1;;z+tan'x]

*%X(X/ﬂ—)’ﬂ)
X2+ (51)

This pressure distribution and that for the dipole case are shown in Figs.
3 and 4 for y = 1.4. This value has been chosen to emphasize the heating
of the gas; however, graphs for y = 1.0 (drawn to emphasize the force
effect) are given in Levy (loc. cit.). The points to note are first, that

in both cases the pressure again dies like x-l. and second, that as in all
cases of linearized compressible flow, the pressure change increases
markedly as the flow approaches sonic velocity.

Morioka (loc. cit.) has also obtained explicit solutions to the dipole
case both for the subsonic flow discussed here and for the supersonic flow
to be treated in the next section. In both cases, the results differ in detail
from those of Levy. However, it is suspected that the differences may be

due to nothing more than misprints.
V. SUPERSONIC PROBLEMS

When the flow is supersonic, the problems under consideration can

be treated by the method of characteristics. Introducing

= - M ey oy M M
§ -g%»x sl AR 20 X+ G-(y+1) 52

-17-
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where, for supersonic flow, [32 = M2 - 1, Eqs. (18) and (26) become

_saa_ (Bp-V) =- é bxby + [\+(I-I)Mz]ﬁ b,’“ (53)
£ (Bp+V)= é by + [1+(-N™"] & by (54)

When there is just a single plate at y = 0 the problem has a simple

solution for arbitrary f1e1d On the wall, since v = 0, the pressure is just

P x, )-—-ﬁ—/ b"% W(ﬂft)la—l b.,z ﬂ-(yn),ﬁ:&:ﬂ% dt

LH-(Y-l)g‘l/" b, 3,3 (), A= %-M 2
(55)

This expression has been evaluated for the magnetic fields discussed
in the section on subsonic flow. Only the single wire result will be quoted

here; it is

P(X0) = ﬂ*?f!'L"‘] ?E’;S!"(“ﬁ)ﬁun ﬁle_ z

4 [@-npx+Y]
Sx*+1)

(56)

This and the corresponding result for the linear dipole are again
shown in Figs. 3 and 4. As might be expected, the symmetry present in
the subsonic case is absent for supersonic flow, while the distant pressure
on the wall falls off in a manner related to the fall in the magnetic field.

In fact, as can be seen from Eq. (55), if the magnetic field were confined
to a finite region in the neighborhood of the origin, the pressure on the
wall would vanish exactly at points sufficiently far downstream so that the

incoming characteristic would lie entirely outside the field region.

-20-



VI. VARIABLE CONDUCTIVITY PROBLEMS

Apart from problems involving physical boundaries, an interesting
and in many ways realistic problem is that in which the conductivity is
allowed to vary with position. It has been found possible to extend the
solution for constant conductivity developed in this paper to the case where
the conductivity is variable under the following conditions: first, for the
supersonic case, with only one bounding surface at y = 0, the conductivity
may vary in an arbitrary manner with x and y. The pressure on the wall
may then be found directly as in Eq. (55) with the function o (x, y) included
in the integral. Second, for the subsonic case, again with only one bounding
surface at y = 0, solutions may be constructed when ¢ is a function of y
only. This result will be demonstrated for the incompressible case, but
the extension to subsonic Mach numbers is immediate.

Consider first the restricted problem where the conductivity is
constant (0 = 1, say) for 0 <y <H, and vanishes for y > H. The relevant

equations are

R S T N

§~/>H
Y<H

(57)

(58)

Let subscripts 1 and 2 refer to the region 0 <y <H and y> H. Then, in
Region 1, the particular solution given in Eqs. (29) and (30) is applicable.

This may be referred to as (VPI’ pPl)' Next, define the complex function

F(x) = (x,H) + 'wP‘ (x, H)

PPy (59)

It is now required to find a pair of complex functions wl(z) ol + ivl and

wp(2z) = p, + iv, such that w,(z) is analytic in Region 1 and w,(z) is analytic
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in Region 2 and such that
Wolk+ i HY = w (x +iH) + F(x) (60)

It is convenient to require that w; should also be analytic for y < 0. Then

the solution to this problem is

w\(z)z_‘l,..f Eg%:d?{_
G

AT
(61)
- A £()
w@=mer | e ¥
(A (62)

where fl and fz are large semi-circles having the line y = H for diameter
and enclosing respectively the regions y < H and y > H. At this stage the
solution in Region 1 may be written symbolically as (pp, VPl) + Wy, and
in Region 2 the solution is w,. Both p and v are now continuous across the
line y = H, but the condition v = 0 on y = 0 has not yet been met., To
accomplish this, it is only necessary to introduce a function w (z), analytic

in y > 0, and such that

‘wavp\«-wﬂw':o on Y=° (63)
and the final solution is now given by
(PP\’ VP‘)+WI +W O<Y<H
W, +W y>H (64)

Two illustrative examples of this procedure are given in Levy (loc. cit.),
but will not be quoted here.
Now consider the case where ¢ is an arbitrary function of y. Define

pH(x, y, H), vH(x, y, H) to be the solution to a problem with a given
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magnetic field in which 0 = 1 for y <H and ¢ =0 for y > H. These quantities
are just those whose derivation was explained above. Then the required

solution is

P(x,¥), vix,v) = 0’ (c0) [PH(x,y,.o), VH (x,y,ao)}

-[[PH(X.‘AH),VH(X,Y,H)] éj.-‘é‘i) dH
° (65)

To prove that this is indeed the required solution, note first that since all

the solutions (pH, VH) are continuous for y > 0 and give vanishing normal
velocity at the wall, the integrated solution Eq. (65) also has these properties.
It remains to show that Eq. (65) satisfies the appropriate differential

equations. Taking Eq. (57) for example

aV 4 9_&_ = 0'(0) [-3—:-5 (x‘y, &) *?SPYH (X,Y,Q)]

kX3 dY
-
v b T do“u)
/ (38 cwmy + FH o) ST 4w
o (66)
But
OvVH , OPH bx by (H>V)
% Dy 0 (H<Y) (67)
Thus
ov o _ _ © do-(H) .,
oy + -sfx—_o-'(oo)bxby [ bbejH—'dH—o“(Y)bxby
(68)

as required; similarly for Eq. (58).
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VII. CONCLUSIONS

A variety of small perturbation magnetohydrodynamic flow problems
have been solved by methods which present the results in an easily assimi-
lable form. A few have been presented in detail here, others referred to.
All these problems could, in principle, have been solved by the more widely
applicable transform methods, but the results obtained by such methods are
rarely suitable for more than numerical computation of a few cases. In
the simple cases quoted here, the effects of compressibility and the effects
of different values of y are readily visible together with the effects of
variable conductivity (as specified in the last section).

The general nature of the results is not, on the whole, surprising,
but tends to agree with other work dealing with similar problems by more
involved techniques. However, the relative importance of the electro-
magnetic and the induced pressure forces is brought out clearly., More
specifically, there is a force on the wall due to the induced pressure field
which, like the electromagnetic force on the coil, is of the first order in
the interaction parameter. In the problems considered in this paper, the
nature of the boundary has the obvious result that this pressure force can
only contribute a lift, but it is certainly true that for bodies not consisting
only of planes parallel to the flow, the induced pressure would alsc con-
tribute to the drag. In the special configurations considered here, for
subsonic flows, the pressure distribution is symmetrical about the wire
or dipole; clearly this will only happen for highly symmetrical configurations
and has no general validity. In addition to the net forces exerted by the
pressure distribution, a resultant moment will also be found in most cases.
Reference to Fig. 4 shows the interesting result that, for the case considered,
the moment would appear to be ''nose down'' for subsonic flow, and ''nose
up'' for supersonic flow.

Finally, it should be emphasized that the weakest point in this, as
in all comparable analyses, is the assumption (for compressible flows) of
uniform scalar conductivity. It is hoped that in future problems of this
nature it will prove possible to treat the conductivity as a realistic function
of the temperature in order to obtain results more closely representative

of real flows.
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